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Ultrafilters on ω

Definition.
U ⊆ P(ω) is an ultrafilter if
• U 6= ∅ and ∅ 6∈ U
• if U1,U2 ∈ U then U1 ∩ U2 ∈ U
• if U ∈ U and U ⊆ V ⊆ ω then V ∈ U .
• for every M ⊆ ω either M or ω \M belongs to U

Example. fixed (or principal) ultrafilter {A ⊆ ω : n ∈ A}



Ultrafilters on ω

Definition.
A free ultrafilter U is called a P-point if for all partitions of ω,
{Ri : i ∈ ω}, either for some i , Ri ∈ U , or (∃U ∈ U) (∀i ∈ ω)
|U ∩ Ri | < ω.

• Assuming CH or MA P-points exist.
• Shelah proved that consistently there may be no P-points.



Generic existence of ultrafilters

Definition.
A class C of ultrafilters exists generically if every filter base of
size less than c can be extended to an ultrafilter belonging to C.

Given a class of ultrafilters C let ge(C) denote the minimal
cardinality of a filter base which cannot be extended to an
ultrafilter from C.

Obviously, ultrafilters from C exist generically if and only if ge(C) = c.



Some examples

Theorem (Ketonen).

ge(P-points) = d

Theorem (Canjar). ge(selective ultfs) = cov(M)

Theorem (Brendle). ge(nowhere dense ultfs) = cof(M)



I-ultrafilters

Definition. (Baumgartner)
Let I be a family of subsets of a set X such that I contains all
singletons and is closed under subsets.
An ultrafilter U on ω is called an I-ultrafilter if for every
f : ω → X there exists U ∈ U such that f [U] ∈ I.

Example. P-points are I-ultrafilters in case of
• X = 2ω and I are finite and converging sequences
• X = ω × ω and I = Fin×Fin



Generic existence of I-ultrafilters

We write ge(I) instead of ge(I-ultrafilters).

Ketonen’s result in this notation: ge(Fin×Fin) = d.

Observation.
If every I-ultrafilter is a J -ultrafilter then ge(I) ≤ ge(J ).



Generic existence of I-ultrafilters

ge(I) denotes the minimal cardinality of a filter base which
cannot be extended to an I-ultrafilter.

Lemma.
ge(I) =
min{|F| : F filter base, F ⊆ I+ ∧ (∀I ∈ I)(∃F ∈ F)|I ∩ F | < ω}



Cofinality of ideals

The cofinality of an ideal I on ω is defined as

cof(I) = min{|A| : A ⊆ I, (∀I ∈ I)(∃A ∈ A) I ⊆ A}

More generally, we define for I ⊆ J

cof(I,J ) = min{|A| : A ⊆ J and (∀I ∈ I)(∃J ∈ A) I ⊆ J}

• cof(I) = cof(I, I).
• cof(I,J ) ≤ min{cof(I), cof(J )}.



Cofinality of ideals

Lemma (Brendle).

ge(I) = min{cof(I,J ) : I ⊆ J } = min{cof(J ) : I ⊆ J }



Uniformity of ideals

non∗(I) = min{|X | : X ⊆ [ω]ω, (∀I ∈ I)(∃X ∈ X ) |I ∩ X | < ω}

cof(I) = min{|A| : A ⊆ I, (∀I ∈ I)(∃A ∈ A) I ⊆ A}

ge(I) = min{|F| : F filter base, F ⊆ I+, (∀I ∈ I)(∃F ∈ F)|I ∩ F | < ω}

Lemma.

non∗(I) ≤ ge(I) ≤ cof(I)



Z-ultrafilters

Z = {A ⊆ N : lim sup
n→∞

|A ∩ n|
n

= 0}

Theorem.
It is consistent with ZFC that ge(Z) < cof(Z).

Proof.
1. (Fremlin) cof(Z) = cof(N )

2. P with conditions (s,Z ) where s ∈ [ω]<ω and Z ∈ Z,
(s′,Z ′) ≤ (s,Z ) if s′ ⊃ s, Z ′ ⊃ Z and (s′ \ s) ∩ Z = ∅

3. ω1-stage f.s.i. of forcing P over a model of MA + c ≥ ℵ2



Z-ultrafilters

Theorem.
cov(N ) = c implies that Z-ultrafilters exist generically.

Proof.
1. a random real adds Z of density zero with infinite

intersection with each ground model set X 6∈ Z
2. iterate



Z-ultrafilters

Corollary.
It is consistent with ZFC that non∗(Z) < ge(Z).

Proof.
1. (Theorem) cov(N ) ≤ ge(Z)
2. (H.-H., Hr.) non∗(Z) ≤ max{d,non(N )}
3. (random model) max{d,non(N )} = ℵ1 < c = cov(N )



Z-ultrafilters

Theorem (Hernández-Hernández, Hrušák).

min{d, cov(N )} ≤ non∗(Z) ≤ max{d,non(N )}

cov(M) ≤ non∗(Z) holds in ZFC

d ≤ cof(M) < non∗(Z) holds in dual Hechler model

cof(M) > non∗(Z) holds in random model

It is an open question whether d ≤ non∗(Z) holds in ZFC.



Z-ultrafilters

Proposition.

d ≤ ge(Z)

Proof. Every P-point is a Z-ultrafilter.



I1/n-ultrafilters

I1/n = {A ⊆ N :
∑
a∈A

1
a
<∞}

non∗(I1/n) ≤ ge(I1/n) ≤ cof(I1/n)

ge(I1/n) ≤ ge(Z)



I1/n-ultrafilters

Theorem.

• CON
(
ge(I1/n) < cof(I1/n)

)
• CON(non∗(I1/n) < ge(I1/n))

• cov(N ) ≤ ge(I1/n)

• CON(ge(I1/n) < d)
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