The generic existence of certain \mathcal{I} -ultrafilters

Jörg Brendle¹ Jana Flašková²

¹Graduate School of System Informatics Kobe University

²Department of Mathematics University of West Bohemia in Pilsen

Winter School 2012 2 February 2012, Hejnice

Ultrafilters on ω

Definition.

- $\mathcal{U} \subseteq \mathcal{P}(\omega)$ is an ultrafilter if
 - $\mathcal{U} \neq \emptyset$ and $\emptyset \notin \mathcal{U}$
 - if $U_1, U_2 \in \mathcal{U}$ then $U_1 \cap U_2 \in \mathcal{U}$
 - if $U \in \mathcal{U}$ and $U \subseteq V \subseteq \omega$ then $V \in \mathcal{U}$.
 - for every $M \subseteq \omega$ either M or $\omega \setminus M$ belongs to \mathcal{U}

Example. fixed (or principal) ultrafilter $\{A \subseteq \omega : n \in A\}$

Ultrafilters on ω

Definition.

A free ultrafilter \mathcal{U} is called a *P*-point if for all partitions of ω , $\{R_i : i \in \omega\}$, either for some *i*, $R_i \in \mathcal{U}$, or $(\exists U \in \mathcal{U}) \ (\forall i \in \omega) | U \cap R_i | < \omega$.

- Assuming CH or MA *P*-points exist.
- Shelah proved that consistently there may be no P-points.

Generic existence of ultrafilters

Definition.

A class C of ultrafilters exists generically if every filter base of size less than c can be extended to an ultrafilter belonging to C.

Given a class of ultrafilters C let $\mathfrak{ge}(C)$ denote the minimal cardinality of a filter base which cannot be extended to an ultrafilter from C.

Obviously, ultrafilters from C exist generically if and only if $\mathfrak{ge}(C) = \mathfrak{c}$.

Some examples

Theorem (Ketonen).

 $\mathfrak{ge}(P\text{-points}) = \mathfrak{d}$

Theorem (Canjar). $\mathfrak{ge}(\mathsf{selective ultfs}) = \mathsf{cov}(\mathcal{M})$ Theorem (Brendle). $\mathfrak{ge}(\mathsf{nowhere dense ultfs}) = \mathsf{cof}(\mathcal{M})$

Definition. (Baumgartner)

Let \mathcal{I} be a family of subsets of a set X such that \mathcal{I} contains all singletons and is closed under subsets. An ultrafilter \mathcal{U} on ω is called an \mathcal{I} -ultrafilter if for every $f: \omega \to X$ there exists $U \in \mathcal{U}$ such that $f[U] \in \mathcal{I}$.

Example. *P*-points are \mathcal{I} -ultrafilters in case of

- $X = 2^{\omega}$ and \mathcal{I} are finite and converging sequences
- $X = \omega \times \omega$ and $\mathcal{I} = Fin \times Fin$

Generic existence of *I*-ultrafilters

We write $\mathfrak{ge}(\mathcal{I})$ instead of $\mathfrak{ge}(\mathcal{I}$ -ultrafilters).

Ketonen's result in this notation: $\mathfrak{ge}(Fin \times Fin) = \mathfrak{d}$.

Observation.

If every \mathcal{I} -ultrafilter is a \mathcal{J} -ultrafilter then $\mathfrak{ge}(\mathcal{I}) \leq \mathfrak{ge}(\mathcal{J})$.

Generic existence of \mathcal{I} -ultrafilters

 $\mathfrak{ge}(\mathcal{I})$ denotes the minimal cardinality of a filter base which cannot be extended to an \mathcal{I} -ultrafilter.

Lemma.

$$\mathfrak{ge}(\mathcal{I}) = \min\{|\mathcal{F}|: \mathcal{F} ext{ filter base, } \mathcal{F} \subseteq \mathcal{I}^+ \land (\forall I \in \mathcal{I})(\exists F \in \mathcal{F})|I \cap F| < \omega\}$$

Cofinality of ideals

The cofinality of an ideal ${\mathcal I}$ on ω is defined as

 $\operatorname{cof}(\mathcal{I}) = \min\{|\mathcal{A}| : \mathcal{A} \subseteq \mathcal{I}, (\forall I \in \mathcal{I})(\exists A \in \mathcal{A}) \ I \subseteq A\}$

More generally, we define for $\mathcal{I}\subseteq\mathcal{J}$

 $cof(\mathcal{I}, \mathcal{J}) = min\{|\mathcal{A}| : \mathcal{A} \subseteq \mathcal{J} \text{ and } (\forall I \in \mathcal{I})(\exists J \in \mathcal{A}) I \subseteq J\}$

- $\operatorname{cof}(\mathcal{I}) = \operatorname{cof}(\mathcal{I}, \mathcal{I}).$
- $cof(\mathcal{I}, \mathcal{J}) \leq min\{cof(\mathcal{I}), cof(\mathcal{J})\}.$

Cofinality of ideals

Lemma (Brendle).

 $\mathfrak{ge}(\mathcal{I}) = \mathsf{min}\{\mathsf{cof}(\mathcal{I},\mathcal{J}): \mathcal{I} \subseteq \mathcal{J}\} = \mathsf{min}\{\mathsf{cof}(\mathcal{J}): \mathcal{I} \subseteq \mathcal{J}\}$

Uniformity of ideals

 $\mathsf{non}^*(\mathcal{I}) = \mathsf{min}\{|\mathcal{X}| : \mathcal{X} \subseteq [\omega]^{\omega}, \, (\forall I \in \mathcal{I})(\exists X \in \mathcal{X}) \, |I \cap X| < \omega\}$

 $\operatorname{cof}(\mathcal{I}) = \min\{|\mathcal{A}| : \mathcal{A} \subseteq \mathcal{I}, \ (\forall I \in \mathcal{I})(\exists A \in \mathcal{A}) \ I \subseteq A\}$

 $\mathfrak{ge}(\mathcal{I}) = \min\{|\mathcal{F}| : \mathcal{F} \text{ filter base, } \mathcal{F} \subseteq \mathcal{I}^+, (\forall I \in \mathcal{I})(\exists F \in \mathcal{F})|I \cap F| < \omega\}$ Lemma.

 $\mathsf{non}^*(\mathcal{I}) \leq \mathfrak{ge}(\mathcal{I}) \leq \mathsf{cof}(\mathcal{I})$

$$\mathcal{Z} = \{ A \subseteq \mathbb{N} : \limsup_{n \to \infty} \frac{|A \cap n|}{n} = 0 \}$$

Theorem.

It is consistent with ZFC that $\mathfrak{ge}(\mathcal{Z}) < cof(\mathcal{Z})$.

Proof.

1. (Fremlin)
$$cof(\mathcal{Z}) = cof(\mathcal{N})$$

- 2. \mathbb{P} with conditions (s, Z) where $s \in [\omega]^{<\omega}$ and $Z \in \mathbb{Z}$, $(s', Z') \leq (s, Z)$ if $s' \supset s, Z' \supset Z$ and $(s' \setminus s) \cap Z = \emptyset$
- 3. ω_1 -stage f.s.i. of forcing \mathbb{P} over a model of $MA + \mathfrak{c} \geq \aleph_2$

Theorem.

 $cov(\mathcal{N}) = \mathfrak{c}$ implies that \mathcal{Z} -ultrafilters exist generically.

Proof.

- 1. a random real adds *Z* of density zero with infinite intersection with each ground model set $X \notin \mathcal{Z}$
- 2. iterate

Corollary.

It is consistent with ZFC that $non^*(\mathcal{Z}) < \mathfrak{ge}(\mathcal{Z})$.

Proof.

- 1. (Theorem) $\text{cov}(\mathcal{N}) \leq \mathfrak{ge}(\mathcal{Z})$
- 2. (H.-H., Hr.) $non^*(\mathcal{Z}) \le max\{\mathfrak{d}, non(\mathcal{N})\}$
- 3. (random model) max{ $\mathfrak{d}, non(\mathcal{N})$ } = $\aleph_1 < \mathfrak{c} = cov(\mathcal{N})$

Theorem (Hernández-Hernández, Hrušák).

 $\min\{\mathfrak{d}, \text{cov}(\mathcal{N})\} \le \text{non}^*(\mathcal{Z}) \le \max\{\mathfrak{d}, \text{non}(\mathcal{N})\}$

 $\text{cov}(\mathcal{M}) \leq \text{non}^*(\mathcal{Z})$ holds in ZFC

 $\mathfrak{d} \leq cof(\mathcal{M}) < non^*(\mathcal{Z})$ holds in dual Hechler model

 $cof(\mathcal{M}) > non^*(\mathcal{Z})$ holds in random model

It is an open question whether $\mathfrak{d} \leq \operatorname{non}^*(\mathcal{Z})$ holds in ZFC.

Proposition.

$$\mathfrak{d} \leq \mathfrak{ge}(\mathcal{Z})$$

Proof. Every *P*-point is a \mathcal{Z} -ultrafilter.

$\mathcal{I}_{1/n}$ -ultrafilters

$$\mathcal{I}_{1/n} = \{ \boldsymbol{A} \subseteq \mathbb{N} : \sum_{\boldsymbol{a} \in \boldsymbol{A}} \frac{1}{\boldsymbol{a}} < \infty \}$$

 $\mathsf{non}^*(\mathcal{I}_{1/n}) \le \mathfrak{ge}(\mathcal{I}_{1/n}) \le \mathsf{cof}(\mathcal{I}_{1/n})$ $\mathfrak{ge}(\mathcal{I}_{1/n}) \le \mathfrak{ge}(\mathcal{Z})$

$\mathcal{I}_{1/n}$ -ultrafilters

Theorem.

- $\operatorname{CON}(\mathfrak{ge}(\mathcal{I}_{1/n}) < \operatorname{cof}(\mathcal{I}_{1/n}))$
- $\text{CON}(\text{non}^*(\mathcal{I}_{1/n}) < \mathfrak{ge}(\mathcal{I}_{1/n}))$
- $\operatorname{COV}(\mathcal{N}) \leq \mathfrak{ge}(\mathcal{I}_{1/n})$
- $\operatorname{CON}(\mathfrak{ge}(\mathcal{I}_{1/n}) < \mathfrak{d})$

References

J. Brendle, Between *P*-points and nowhere dense ultrafilters, *Israel J. Math.* **113**, 205–230, 1999.

R. M. Canjar, On the generic existence of special ultrafilters, *Proc. Amer. Math. Soc.* **110**, no. 1, 233–241, 1990.

F. Hernández-Hernández, M. Hrušák, Cardinal invariants of analytic *P*-ideals, *Canad. J. Math.* **59**(3), 575 – 595, 2007.

J. Ketonen, On the existence of *P*-points in the Stone-Čech compactification of integers, *Fund. Math.* **92**, no. 2, 91—94, 1976.