The generic existence of certain \mathcal{I}-ultrafilters

Jörg Brendle ${ }^{1} \quad$ Jana Flašková ${ }^{2}$

${ }^{1}$ Graduate School of System Informatics
Kobe University
${ }^{2}$ Department of Mathematics
University of West Bohemia in Pilsen

Winter School 2012
2 February 2012, Hejnice

Ultrafilters on ω

Definition.

$\mathcal{U} \subseteq \mathcal{P}(\omega)$ is an ultrafilter if

- $\mathcal{U} \neq \emptyset$ and $\emptyset \notin \mathcal{U}$
- if $U_{1}, U_{2} \in \mathcal{U}$ then $U_{1} \cap U_{2} \in \mathcal{U}$
- if $U \in \mathcal{U}$ and $U \subseteq V \subseteq \omega$ then $V \in \mathcal{U}$.
- for every $M \subseteq \omega$ either M or $\omega \backslash M$ belongs to \mathcal{U}

Example. fixed (or principal) ultrafilter $\quad\{A \subseteq \omega: n \in A\}$

Ultrafilters on ω

Definition.

A free ultrafilter \mathcal{U} is called a P-point if for all partitions of ω, $\left\{R_{i}: i \in \omega\right\}$, either for some $i, R_{i} \in \mathcal{U}$, or $(\exists U \in \mathcal{U})(\forall i \in \omega)$ $\left|U \cap R_{i}\right|<\omega$.

- Assuming CH or MA P-points exist.
- Shelah proved that consistently there may be no P-points.

Generic existence of ultrafilters

Definition.

A class \mathcal{C} of ultrafilters exists generically if every filter base of size less than \mathfrak{c} can be extended to an ultrafilter belonging to \mathcal{C}.

Given a class of ultrafilters \mathcal{C} let $\mathfrak{g e}(\mathcal{C})$ denote the minimal cardinality of a filter base which cannot be extended to an ultrafilter from \mathcal{C}.

Obviously, ultrafilters from \mathcal{C} exist generically if and only if $\mathfrak{g e}(\mathcal{C})=\mathfrak{c}$.

Some examples

Theorem (Ketonen).

$$
\mathfrak{g e}(P \text {-points })=\mathfrak{d}
$$

Theorem (Canjar). $\quad \mathfrak{g e}$ (selective ultfs) $=\operatorname{cov}(\mathcal{M})$
Theorem (Brendle). $\mathfrak{g e}$ (nowhere dense ultfs $)=\operatorname{cof}(\mathcal{M})$

\mathcal{I}-ultrafilters

Definition. (Baumgartner)

Let \mathcal{I} be a family of subsets of a set X such that \mathcal{I} contains all singletons and is closed under subsets.
An ultrafilter \mathcal{U} on ω is called an \mathcal{I}-ultrafilter if for every $f: \omega \rightarrow X$ there exists $U \in \mathcal{U}$ such that $f[U] \in \mathcal{I}$.

Example. P-points are \mathcal{I}-ultrafilters in case of

- $X=2^{\omega}$ and \mathcal{I} are finite and converging sequences
- $X=\omega \times \omega$ and $\mathcal{I}=$ Fin \times Fin

Generic existence of \mathcal{I}-ultrafilters

We write $\mathfrak{g e}(\mathcal{I})$ instead of $\mathfrak{g e}(\mathcal{I}$-ultrafilters).
Ketonen's result in this notation: $\mathfrak{g e}($ Fin \times Fin $)=\mathfrak{d}$.

Observation.
If every \mathcal{I}-ultrafilter is a \mathcal{J}-ultrafilter then $\mathfrak{g e}(\mathcal{I}) \leq \mathfrak{g e}(\mathcal{J})$.

Generic existence of \mathcal{I}-ultrafilters

$\mathfrak{g e}(\mathcal{I})$ denotes the minimal cardinality of a filter base which cannot be extended to an \mathcal{I}-ultrafilter.

Lemma.
$\mathfrak{g e}(\mathcal{I})=$
$\min \left\{|\mathcal{F}|: \mathcal{F}\right.$ filter base, $\left.\mathcal{F} \subseteq \mathcal{I}^{+} \wedge(\forall I \in \mathcal{I})(\exists F \in \mathcal{F})|I \cap F|<\omega\right\}$

Cofinality of ideals

The cofinality of an ideal \mathcal{I} on ω is defined as

$$
\operatorname{cof}(\mathcal{I})=\min \{|\mathcal{A}|: \mathcal{A} \subseteq \mathcal{I},(\forall I \in \mathcal{I})(\exists A \in \mathcal{A}) I \subseteq A\}
$$

More generally, we define for $\mathcal{I} \subseteq \mathcal{J}$

$$
\operatorname{cof}(\mathcal{I}, \mathcal{J})=\min \{|\mathcal{A}|: \mathcal{A} \subseteq \mathcal{J} \text { and }(\forall I \in \mathcal{I})(\exists J \in \mathcal{A}) I \subseteq J\}
$$

- $\operatorname{cof}(\mathcal{I})=\operatorname{cof}(\mathcal{I}, \mathcal{I})$.
- $\operatorname{cof}(\mathcal{I}, \mathcal{J}) \leq \min \{\operatorname{cof}(\mathcal{I}), \operatorname{cof}(\mathcal{J})\}$.

Cofinality of ideals

Lemma (Brendle).

$$
\mathfrak{g e}(\mathcal{I})=\min \{\operatorname{cof}(\mathcal{I}, \mathcal{J}): \mathcal{I} \subseteq \mathcal{J}\}=\min \{\operatorname{cof}(\mathcal{J}): \mathcal{I} \subseteq \mathcal{J}\}
$$

Uniformity of ideals

$$
\operatorname{non}^{*}(\mathcal{I})=\min \left\{|\mathcal{X}|: \mathcal{X} \subseteq[\omega]^{\omega},(\forall I \in \mathcal{I})(\exists X \in \mathcal{X})|I \cap X|<\omega\right\}
$$

$\operatorname{cof}(\mathcal{I})=\min \{|\mathcal{A}|: \mathcal{A} \subseteq \mathcal{I},(\forall I \in \mathcal{I})(\exists A \in \mathcal{A}) I \subseteq A\}$
$\mathfrak{g e}(\mathcal{I})=\min \left\{|\mathcal{F}|: \mathcal{F}\right.$ filter base, $\left.\mathcal{F} \subseteq \mathcal{I}^{+},(\forall I \in \mathcal{I})(\exists F \in \mathcal{F})|\mathcal{I} \cap F|<\omega\right\}$
Lemma.

$$
\operatorname{non}^{*}(\mathcal{I}) \leq \mathfrak{g e}(\mathcal{I}) \leq \operatorname{cof}(\mathcal{I})
$$

Z-ultrafilters

$$
\mathcal{Z}=\left\{A \subseteq \mathbb{N}: \limsup _{n \rightarrow \infty} \frac{|A \cap n|}{n}=0\right\}
$$

Theorem.
It is consistent with ZFC that $\mathfrak{g e}(\mathcal{Z})<\operatorname{cof}(\mathcal{Z})$.
Proof.

1. (Fremlin) $\operatorname{cof}(\mathcal{Z})=\operatorname{cof}(\mathcal{N})$
2. \mathbb{P} with conditions (s, Z) where $s \in[\omega]^{<\omega}$ and $Z \in \mathcal{Z}$, $\left(s^{\prime}, Z^{\prime}\right) \leq(s, Z)$ if $s^{\prime} \supset s, Z^{\prime} \supset Z$ and $\left(s^{\prime} \backslash s\right) \cap Z=\emptyset$
3. ω_{1}-stage f.s.i. of forcing \mathbb{P} over a model of $M A+\mathfrak{c} \geq \aleph_{2}$

\mathcal{Z}-ultrafilters

Theorem.
$\operatorname{cov}(\mathcal{N})=\mathfrak{c}$ implies that \mathcal{Z}-ultrafilters exist generically.

Proof.

1. a random real adds Z of density zero with infinite intersection with each ground model set $X \notin \mathcal{Z}$
2. iterate

\mathcal{Z}-ultrafilters

Corollary.
It is consistent with ZFC that non* $(\mathcal{Z})<\mathfrak{g e}(\mathcal{Z})$.
Proof.

1. (Theorem) $\operatorname{cov}(\mathcal{N}) \leq \mathfrak{g e}(\mathcal{Z})$
2. (H.-H., Hr.) $\operatorname{non}^{*}(\mathcal{Z}) \leq \max \{\mathfrak{d}, \operatorname{non}(\mathcal{N})\}$
3. (random model) $\max \{\mathfrak{d}, \operatorname{non}(\mathcal{N})\}=\aleph_{1}<\mathfrak{c}=\operatorname{cov}(\mathcal{N})$

\mathcal{Z}-ultrafilters

Theorem (Hernández-Hernández, Hrušák).

$$
\min \{\mathfrak{d}, \operatorname{cov}(\mathcal{N})\} \leq \operatorname{non}^{*}(\mathcal{Z}) \leq \max \{\mathfrak{d}, \operatorname{non}(\mathcal{N})\}
$$

$\operatorname{cov}(\mathcal{M}) \leq$ non $^{*}(\mathcal{Z})$ holds in ZFC
$\mathfrak{d} \leq \operatorname{cof}(\mathcal{M})<$ non* $^{*}(\mathcal{Z})$ holds in dual Hechler model
$\operatorname{cof}(\mathcal{M})>$ non $^{*}(\mathcal{Z})$ holds in random model
It is an open question whether $\mathfrak{d} \leq$ non* $^{*}(\mathcal{Z})$ holds in ZFC.

\mathcal{Z}-ultrafilters

Proposition.

$$
\mathfrak{d} \leq \mathfrak{g e}(\mathcal{Z})
$$

Proof. Every P-point is a \mathcal{Z}-ultrafilter.

$\mathcal{I}_{1 / n}$-ultrafilters

$$
\mathcal{I}_{1 / n}=\left\{A \subseteq \mathbb{N}: \sum_{a \in A} \frac{1}{a}<\infty\right\}
$$

$\operatorname{non}^{*}\left(\mathcal{I}_{1 / n}\right) \leq \mathfrak{g e}\left(\mathcal{I}_{1 / n}\right) \leq \operatorname{cof}\left(\mathcal{I}_{1 / n}\right)$
$\mathfrak{g e}\left(\mathcal{I}_{1 / n}\right) \leq \mathfrak{g e}(\mathcal{Z})$

$\mathcal{I}_{1 / n}$-ultrafilters

Theorem.

- $\operatorname{CON}\left(\mathfrak{g e}\left(\mathcal{I}_{1 / n}\right)<\operatorname{cof}\left(\mathcal{I}_{1 / n}\right)\right)$
- $\operatorname{CON}\left(\operatorname{non}^{*}\left(\mathcal{I}_{1 / n}\right)<\mathfrak{g e}\left(\mathcal{I}_{1 / n}\right)\right)$
- $\operatorname{cov}(\mathcal{N}) \leq \mathfrak{g e}\left(\mathcal{I}_{1 / n}\right)$
- $\operatorname{CON}\left(\mathfrak{g e}\left(\mathcal{I}_{1 / n}\right)<\mathfrak{d}\right)$

References

J. Brendle, Between P-points and nowhere dense ultrafilters, Israel J. Math. 113, 205-230, 1999.
R. M. Canjar, On the generic existence of special ultrafilters, Proc. Amer. Math. Soc. 110, no. 1, 233-241, 1990.
F. Hernández-Hernández, M. Hrušák, Cardinal invariants of analytic P-ideals, Canad. J. Math. 59(3), 575 - 595, 2007.
J. Ketonen, On the existence of P-points in the Stone-Čech compactification of integers, Fund. Math. 92, no. 2, 91-94, 1976.

